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Abstract
Purpose – In oil/gas exploitations of ice-covered cold regions, conical offshore structures are designed
to reduce ice force and to avoid the ice-induced intense vibrations of vertical structures. The purpose
of this paper is to investigate the interaction between ice cover and conical offshore structures,
the discrete element method (DEM) is introduced to determine the dynamic ice loads under different
structure parameters and ice conditions.
Design/methodology/approach – The ice cover is dispersed into a series of bonded spherical
elements with the parallel bonding model. The interaction between ice cover and conical offshore
structure is obtained based on the DEM simulation. The influence of ice velocity on ice load is
compared well with the experimental data of Hamburg Ship Model Basin. Moreover, the ice load on
a conical platform in the Bohai Sea is also simulated. The ice loads on its upward and downward
ice-breaking cones are compared.
Findings – The DEM can be used well to simulate the ice loads on conical structures. The influences
of ice velocity, ice thickness, conical angle on ice loads can be analyzed with DEM simulations.
Originality/value – This DEM can also be applied to simulate ice loads of different offshore
structures and aid in determining ice load in offshore structure designs.
Keywords Sea ice, Conical offshore structure, Discrete element method (DEM), Ice load
Paper type Research paper

1. Introduction
In ice-covered regions, the ice force is the dominant environmental factor for the
structure’s design. Ice loads bring more damage to the offshore structures than that of
other environmental factors, such as wind and wave. When interacting with conical
structures, the ice covers fail in bending mode. In contrast, when interacting with
vertical structures, the ice covers fail in crushing mode. Thus, the ice-induced loads for
conical structures are much lower than the loads for vertical structures (Daley et al.,
1998; Yue and Bi, 2000; Brown and Määttänen, 2009; Huang and Li, 2011). By reducing
the peak loads, the ice-breaking cone can effectively reduce the ice-induced vibration,
especially avoiding the resonant vibration of vertical jacket structures. Recently,
more than ten conical structures have been established in the Bohai Sea, on which
ice-reduced vibrations are significantly reduced comparing to the vertical structures.
But the ice-induced vibrations of conical structures were also measured in the field Engineering Computations:
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observation in the Bohai Sea (Qu et al., 2006; Yue et al., 2007). Therefore, it is still
necessary to study the interaction between sea ice and conical structures for structure
design and fatigue analysis.

During the interaction between ice cover and conical structure, the ice load is related
to ice conditions (ice type, strength and velocity) and structural parameters (cone angle,
cone diameter, upward or downward of cone surface, structure mass and stiffness).
Different ice parameters and structural types result in various failure modes and ice
loads (Dempsey, 2000). Whatever the failure mode, sea ice cover presents an obvious
conversion from continuum to discontinua. Thus, the discrete element models in the
last decade (Selvadurai and Sepehr, 1999; Lau et al., 2011; Paavilainen and Tuhkuri,
2012) have been developed to describe the discrete characteristics of ice cover during
the ice-structure interaction. If considering the pancake ice, ice ridge and rafted ice, the
discrete element models have been applied more widely (Hopkins et al., 2004; Sun and
Shen, 2011).

In the numerical simulation of ice loads on offshore structures, the discrete element
methods (DEM) have been developed using different element shapes. In the early
works, the 2D disk was adopted to model ice loads of pancake ice in broken ice (Hansen
and Løset, 1999a, b). Recently, the 3D polyhedral elements have been developed to
simulate the ice cover. The software of 3D block DEM (DEICE3D) was adopted
to simulate the interaction between ice and conical structures (Lau et al., 2011).
The 3D DEM with polyhedral shapes were also adopted to simulate the punch through
tests of ice rubble. The simulated data compared well with the laboratory tests
(Polojarvi et al., 2012). Therefore, the discrete element models have been widely applied
in the investigations of ice loads. Many results have been obtained to reveal the ice
mechanics during the interaction between offshore structure and ice cover.

In the DEM simulations of ice loads on offshore structures, the breakage of ice cover
can be obtained with bonded elements. In this study, we develop a simplified discrete
element model with bonded spheres to model the ice cover. The breakage of ice cover can
be obtained via the de-bonding process of bonded particles. Based on DEM simulations,
the influence of ice velocity on ice load is obtained and compared with the experimental
results. Moreover, the ice loads on upward and downward cones are also discussed.

2. DEM for interaction between ice cover and conical structure
A parallel bonding model is introduced to transfer the force and moment between
bonded particles, as shown in Figure 1. Here, XA and XB are the position vectors of
elements A and B, Fn

b, F
s
b and Mn

b, M
s
b are the normal and shear component vectors

Figure 1.
Construction of level
ice cover with
bonded spherical
particles
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of force and moment, respectively. The parallel-bond glue is set over a circular cross
section lying between the particles, and can transmit both force and moment (Potyondy
and Cundall, 2004). The maximum normal and shear stresses within the bonding
section are determined with the inter-particle force and moment. The total force and
moment associated with the parallel bond are denoted by Fb and Mb. Each of these
vectors can be written into the normal and shear components as:

Fb ¼ Fn
bþFs

b (1)

Mb ¼ Mn
bþMs

b (2)

The maximum normal and tangential stresses in the bonding section can be
determined as:

smax ¼
Fn
b

�� ��
A

þ Ms
b

�� ��
I

R (3)

tmax ¼
Fs
b

�� ��
A

þ Mn
b

�� ��
J

R (4)

where A, R, J and I are the area, radius, polar inertia moment and inertia moment of the
bonding disk, respectively. Here we have A¼ πR2, J¼ πR4/2, I¼ πR4/4, where R is the
radius of bonding section.

For the sea ice materials, the brine volume is a key factor affecting its strength on a
macro scale (Timco and Weeks, 2010; Ji et al., 2011). The exponential function is
introduced to link the flexural strength of sea ice and the brine volume. In this DEM
simulation, the bonding strength has a similar relationship between inter-particle
bonding strength and the brine volume on a micro scale. Here, we have:

sb ¼ bðvbÞsmax
b here b ¼ e�4:29

ffiffiffi
vb

p
(5)

where β(vb) is the reduction index of ice strength and is set as a function of brine
volume, smax

b is the maximum bonding strength between ice particles.
The temperature and salinity can be combined as one parameter of brine volume

with (Frankenstein and Garner, 1967):

nb ¼ S 0:532þ49:185
Tj j

� �
(6)

where T is the ice temperature (1C), and S is the ice salinity(‰). Hence, the strength of
sea ice under different temperatures and salinities can be determined.

The interaction between ice particles is calculated with an elastic-viscous contact
model based on the Mohr-Coulomb shear friction law, as shown in Figure 2(b), where
MA and MB are the mass of ice particle A and B, Kn and Ks are the normal and
tangential stiffness, Cn and Cs are the normal and tangential damping coefficients, μ is
the inter-particle friction coefficient.

Between two contacting ice particles, the normal force Fn ¼ Knxn�Cn _xn and
the tangential force Fs ¼ min Ksxs�Cs _xsj j;m Fnj jð ÞUns. Here, xn; _xn and xs; _xs are the
relative displacement and velocity of the two contacting particles in normal and
tangential directions, respectively. ns is the unit vector in tangential direction. Here, the
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damping coefficient Cn ¼ zn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MKn

p
, the dimensionless normal damping coefficient

zn ¼ �lne=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ ln2e

p
, e is the coefficient of restitution. The normal and tangential

stiffness have the relationship of Ks¼ 0.5Kn and Cs¼ 0.5Cn here.

3. Sensitive analysis of computational parameters on sea ice flexural
strength
The flexural strength of sea ice is a key parameter in determining the ice load on conical
offshore structure. A series of field and indoor physical tests have been carried out
and the relationship between the sea ice flexural strength and sea ice parameters, such
as ice temperature, salinity and sample size, has been obtained. Here, the influences
of computational parameters in DEM simulations on sea ice flexural strength are
analyzed under different element sizes, ice temperatures and salinities.

The sea ice sample size is designed as 70 mm high, 70 mm wide and 700 mm long.
Here, we set the particle diameters (D) as 10, 15 and 20 mm, respectively, to study the
influence of particle size on the flexural strength. The main computational parameters
are listed in Table I. The bonding strength of sea ice is set the function of brine volume,
which can be determined under given temperature and salinity by Equations (5) and (6).

The simulated bending failure processes are plotted as Figure 3 with different
particle sizes. With different brine volumes, which are determined with various
salinities and temperatures, the flexural strengths are determined with DEM simulated
for different particle sizes. The fitted functions between ice brine volume and flexural
strength are plotted in Figure 4 with different particle sizes. We can find the strength is
independent of the particle size.

In the field experiments, the sea ice flexural strength was measured in different cold
regions. Timco and Weeks (2010) found the flexural strength of sea ice has a negative
exponential relationship to square root of brine volume. Ji et al. (2011) also determined
the relationship between flexural strength and brine volume in the Bohai Sea. Both of
their results are plotted in Figure 5. The results can be used to validate the DEM
simulation data. We can find that the simulated result with regular packing is
compared well with the experimental data. But the simulated data of irregular packing

Fb
s

Mb
s

XA XB

D
Fb

n
Mb

n

µ

Cn

Cs

Removed when
sliding

Ks

Kn

MA

MB

(a) (b)

Notes: (a) Parallel bonding model; (b) contact force model

Figure 2.
Parallel bonding
model and contact
force model of sea
ice particles
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Definition Symbols Values

Sample size b× h×L 70× 70× 700 mm
Distance of loading points L0 500 mm
Particle size D 10, 15, 20 mm
Particle-particle friction μpp 0.1
Particle-particle restitution epp 0.9
Loading rate u 0.1 m/s
Elastic Modulus E 10 MPa
Maximum bonding strength σb

max 1.5 MPa
Ice salinity S 0.1~7.0‰
Ice temperature T −20 ~ −1 1C
Brine volume vb 0.001 ~ 0.149

Table I.
Computational

parameters for DEM
simulation of sea ice

flexural strength

(a) (b) (c)

Notes: (a) D=10mm; (b) D=15mm; (c) D=20mm

Figure 3.
Bending failure

process of sea ice
simulated with DEM

using different
particle sizes

0.0
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(vb)0.5
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f (

M
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a)

D=20mm   �f = 3.18e–4.18(v b)0.5

D=15mm   �f = 3.30e–4.15(v b)0.5

D=10mm   �f = 3.31e–4.14(v b)0.5

Particle Size

Figure 4.
Comparison of sea

ice flexural strengths
under different
particle sizes
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is a little larger than the experimental data. It can be modified with adjusting the
maximum bonding strength in the DEM simulation.

4. DEM simulation of ice load and compared with Hamburg Ship Model
Basin (HSVA) experiment
4.1 HSVA experimental setup
The physical experiment of ice cover-conical structure interaction was performed in the
ice tank of the HSVA in 2009. The ice tank is 78 m long by 10m wide by 2.5 m deep. The
model structure was mounted to a large towing carriage which can travel the length of
the tank. Tests were conducted by moving the model structure at a determined speed
through a stationary ice sheet. The model structure and its dimensions are shown in
Figure 6. In this test, three different cones (narrow upward cone, wide upward cone and
wide downward cone) were designed to investigate the influence of structure size and
type on ice load. In this study, we simulate the ice load of narrow upward cone with the
DEM under different ice velocities.

4.2 Simulation of ice loads on conical structure with DEM
In the DEM simulation of the interaction between ice cover and conical model structure
performed in HSVA, the main computational parameters are listed in Table II. As the
ice basin is too large for the DEM simulation, we only define a small square of ice sheet
in front of the cone. This ice cover is larger than the diameter of cone to reduce the

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Measured data

Timco et al. (1994)

�f  = 2.41e–4.29(�b)0.5

R2 = 0.52

Ji et al. (2011)

�
f 
(M

P
a)

(  b)0.5

Figure 5.
Sea ice flexural
strengths with
physical experiments

0.696m

61.4°

0.30m

0.30m

0.31m

Figure 6.
The HSVA conical
model structure for
ice load tests
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boundary limitation. The particles at the left and right side boundaries of ice cover are
fixed. The conical structure is dragged at a constant velocity. The model structure
performs vibration under the collision of ice cover. The displacement and acceleration
of model structure can also be determined when its mass, stiffness and damping ratio
are defined.

With the DEM and its computational parameters above, the interaction between
ice cover and conical model structure is simulated. The snapshots are shown in
Figure 7 at different times. During the interaction between ice cover and model
structure, the ice sheet breaks into small pieces when the inter-particle stress is
larger than its bonding strength. The ice sheet breaks in both circumferential and
radical failure modes in front of the ice-breaking cone. The phenomena have also
been observed in the full-scale field observation in the Bohai Sea (Qu et al., 2006;
Wang et al., 2012).

The simulated ice load in x direction is plotted in Figure 8(a), while the HSVA
experimental data is plotted in Figure 8(b). From both of them, we can find the ice loads
perform obvious impact characteristics. A dynamic ice load function and its spectrum

Definition Symbol Values

Sea ice density ρ 920 kg/m3

Ice cover size L× b 3.5× 2.8 m
Ice thickness Hi 0.032 m
Relative velocity Vi 0.38 m/s
Normal stiffness of ice particle Kn 2.6× 107N/m
Shear stiffness of ice particle Ks 1.3× 107N/m
Particle-particle friction μpp 0.1
Particle-particle restitution epp 0.9
Wall-particle friction μwp 0.1
Wall-particle restitution ewp 0.3
Maximum bonding strength σb

max 0.5 MPa
Conical angle of model structure θ 61.4°
Diameter of cone at water line D 0.6 m
Model structure mass Mpile 1.0× 103 kg
Model structure damping ratio ξpile 0.03
Model structure stiffness Kpile 1.0× 107 N/m

Table II.
Main computational
parameters in DEM

simulation of
interaction between

ice cover and
conical model

structure
in HSVA

(a) (b) (c)

Notes: (a) t=1.7s; (b) t=4.5s; (c) t=7.0s

Figure 7.
Snapshots of

interaction between
ice cover and

ice-breaking cone
under velocity
Vi¼ 380 mm/s
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have been developed for conical structures based on field observations in the Bohai Sea
(Qu et al., 2006; Yue et al., 2007). For a typical ice load function, the force period T,
the ice force amplitude F0, the ice climbing force Fc, and the ice bending failure force Fb
are shown in Figure 9. The period and the maximum value of ice force are the key
parameters in the ice load function, and are dominated with the velocity, thickness,
strength of ice cover and the size and angle of the cone. The ice bending failure force
plays a key role for the global ice force on ice-breaking cone. In the DEM simulation
here, the maximum force F0¼ 450 N, the mean ice climbing force Fc¼ 12.6 N, and the
ice bending failure force Fb¼ 352.9 N. In the HSVA experiment, we have F0¼ 420 N,
Fc¼ 25.5 N, Fb¼ 324.5 N. The time-series of ice loads above are quite close in the DEM
simulation and HSVA data. Therefore, the DEM simulation can catch the main
characteristics of ice loads on conical structure.

4.3 Influence of relative velocity on ice load
To investigate the influence of velocity on ice load, five different drag velocities were
performed in the HSVA tests as Vi¼ 40, 100, 200, 380 cm/s. The ice thickness Hi¼ 32
mm in all tests under different velocities. Here, we simulate the interaction of ice load on
this conical model structure with different velocities with DEM. The experimental and
simulated ice loads in x direction are plotted in Figure 10.
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Figure 8.
Ice load on
ice-breaking cone
in x direction under
the relative velocity
Vi¼ 380 mm/s

T

F

F0

Fb

Fc

Notes: Here, T is the load period, F0 is the ice load peak, Fc is the
climbing ice load, Fb is the bending ice load

Figure 9.
An ice load
function on
conical structure
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Because of the limitation of DEM computational efficiency, the dynamic duration of
numerical simulation is much shorter than the HSVA data. To comprehensively
compare the numerical data and experimental results, the maximum ice load, mean ice
load and frequency of ice load are plotted in Figure 11. From both of them, we can find
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Figure 10.
Ice force in x

direction obtained
with DEM

simulation and
HSVA test
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the maximum value and frequency of ice load increase with increasing ice velocity. The
DEM results compared well with that of the experimental data of HSVA.

5. Numerical simulation of ice load on upward-downward combined cone
in the Bohai sea
5.1 Ice-breaking cone in the Bohai sea
In the Bohai Sea of China, about 20 conical jacket platforms were constructed in the last
two decades. Most of them are combined with the top upward cone and the bottom
downward cone. In this way, the cone height can be 4 m to cover the tidal height there.
As the first conical jacket platform in the Bohai Sea, the JZ20-2 MNW and MUQ
platforms are shown in Figure 12(a). The cone is combined by upward cone and
downward cone, shown in Figure 12(b).

In DEM simulations of the interaction between sea ice and ice-breaking cone, the
computational parameters are listed in Tables II and III. A square domain of ice
cover is defined. The side boundaries are set moving with a constant ice velocity
to drag the whole computational domain. The fixed conical pile can vibrate under
the impact of ice cover.

(a) (b)

Notes: (a) JZ20-2 MNW and MUQ platforms; (b) ice-breaking cone

Figure 12.
Conical jacket
platforms in the
Bohsai Sea

Definition Symbol Values

Ice cover size L× b 20× 15 m
Ice thickness ti 0.2 m
Ice velocity Vi 0.5 m/s
Particle normal stiffness Kn 1.6× 108 N/m
Particle shear stiffness Ks 0.8× 108 N/m
Sea ice salinity S 6‰
Sea ice temperature T −10°C
Upward conical angle θ1 60°
Downward conical angle θ2 45°
Diameter of cone at water line D 3.2 m
Mass of conical pile Mpile 1.85× 106 kg
Damping coefficient of conical pile ξpile 0.03
Stiffness of conical pile Kpile 2.0× 108 N/m

Table III.
Main computational
parameters of DEM
simulation of
dynamic ice load
on conical structures
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5.2 Interaction between sea ice and upward and downward cones
For the upward cone, the snapshots simulated with DEM are plotted in Figure 13 at a
different time. We can find the ice cover breaks into lots of pieces during the collision
with the cone surface. The size of broken blocks is a key factor affecting the frequency
and magnitude of ice load. Its probability distribution has been discussed in the field
observation in the Bohai Sea (Yue et al., 2007). The simulated ice loads in x and
z directions are plotted in Figure 14. The maximum loads are 37.1 and 18.2 kN in
x and z directions, respectively.

For the downward cone, the snapshots simulated with DEM are given in
Figure 15, and the ice loads in x and z directions are plotted in Figure 16. The
maximum ice loads are 18.1 and16.2 kN in x and z directions. We can find the ice
load on downward cone is much lower than that on upward cone. The horizontal
force on conical structure increases with increasing cone angle. Here, the angle
of downward cone is 45°, which is much smaller than that of upward cone of 60°.
The mechanism for the low ice load on downward cone will be analyzed in detail in
a future study.

(a) (b)

(c) (d)

Notes: (a) t=12s; (b) t=20s; (c) t=36s; (d) t=55s

Figure 13.
Snapshots of

interaction between
sea ice and upward

cone simulated
with DEM
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Notes: (a) Ice load in x direction; (b) ice load in z direction

Figure 14.
Simulated dynamic

ice load in x and
z directions
on upward

ice-breaking cone
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6. Conclusions
To determine the ice loads on conical offshore structure, the DEM is developed.
The spherical particles are bonded to describe the ice cover. The interactions
between ice cover and ice-breaking cone are simulated with DEM to determine the
ice load. The influences of particle size, brine volume of sea ice on the flexural
strength are discussed with DEM simulations. The simulated ice loads compared
well with that measured in HSVA experiments under different velocities. The results
show that the ice load increases with increasing ice velocity. Moreover, the ice loads
on upward and downward cones are simulated with DEM using the cone size and
shapes in the Bohai Sea. The ice load on downward cone is much lower than that on
upward cone. The mechanism will be investigated with this DEM simulation in
a future study.

DEM is an effective tool to study the ice load on offshore structures. In future
studies, the computational parameters will be validated with the field data in the Bohai
Sea. The ice-breaking length will be analyzed statistically with the DEM results.
Moreover, the shielding effect on total ice load for multi-leg offshore structures and
the CUDA-GPU computational technique for large computational scale will also be
investigated.

(a) (b)

(c) (d)

Notes: (a) t=10s; (b) t=24s; (c) t=38s; (d) t=55s

Figure 15.
Snapshots of
interaction between
sea ice and
downward cone
simulated
with DEM
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Notes: (a) Ice load in x direction; (b) ice load in z direction

Figure 16.
Simulated dynamic
ice load in x and
z directions on
downward
ice-breaking cone
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